If it's not what You are looking for type in the equation solver your own equation and let us solve it.
90x-27-42x^2=0
a = -42; b = 90; c = -27;
Δ = b2-4ac
Δ = 902-4·(-42)·(-27)
Δ = 3564
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3564}=\sqrt{324*11}=\sqrt{324}*\sqrt{11}=18\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(90)-18\sqrt{11}}{2*-42}=\frac{-90-18\sqrt{11}}{-84} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(90)+18\sqrt{11}}{2*-42}=\frac{-90+18\sqrt{11}}{-84} $
| 5x-4/7=-3(1/6-4) | | a-18=15 | | i=1000.122 | | -17=1/3(y=9) | | 9x+2x-7x-5=23 | | 5•s-18•4s=-36 | | 5x²+3x=0 | | 19+a=17 | | d/10+d/8+660=780 | | 3x+4x-5x=400 | | 4x+2-9x=-5x+6 | | |x-4|=6x+11 | | 5(3x+8)=-32+12 | | 2(3z-5)-z=10-3 | | a2+3a+9=0 | | 2x+7-7x+3=5x+10 | | |k+5|=7 | | 2x=6+(-18 | | 6+1/x=18 | | x^2-1/x-1=3 | | F(x)=x3+x2 | | 1/3y+1/3=5/12 | | 4n-(-5-n)=-3(n+1) | | x2-1/x-1=3 | | 3n+14=n+46 | | 3x²-4x+9=0 | | 12x=-8-32 | | 2=14/x | | 11-5a)=(5a+4) | | 8(3x+4)=196 | | -11-5a=)(5a+4) | | -2x-6=28 |